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        _________________________________________________________
        |SUMMARY                                                |
        |Through a series of misunderstandings and mistakes,    |
        |the PACE report by Novak and Fuller badly overstates   |
        |the effects of subgroups (diversity) on the probability|
        |of meeting the NCLB requirements. Examples of useful   |
        |probability calculations on this important question are|
        |presented to correct the misinformation in the PACE    |
        |Policy Brief and to guide further investigations on    |
        |statistical properties of these accountability systems.|
        |_______________________________________________________|

This rebuttal demonstrates that the empirical claims in the PACE Policy 
Brief 03-4 December 2003 "Penalizing Diverse Schools? Similar test scores, 
but different students, bring federal sanctions" by John R. Novak and Bruce 
Fuller do not stand up to scrutiny.  Unfortunately, the claims and 
conclusions of this PACE report did receive widespread press attention, 
with favorable articles spanning the San Francisco Chronicle to the New 
York Times (both December 23, 2003).

The PACE report (available at pace.berkeley.edu/pace_publications.html) 
asserts under "Key Findings" that
     schools serving diverse students in California are less likely 
     to achieve their growth targets....
     even when students display almost identical average test 
     scores schools with more subgroups are more likely to miss 
     their growth targets under federal rules set by the No Child 
     Left Behind Act. Schools serving middle-class children, for 
     example, are 28 percent more likely to be labeled “needs 
     improvement” by the feds when serving five student subgroups 
     than schools serving one group. (PACE page 1)
Such claims are important to examine because, clearly, if statements like 
those in the PACE report were credible, then the NCLB accountability system 
would not be defensible.

The PACE Policy Brief does raise an absolutely legitimate question about 
the statistical properties of California NCLB accountability; what are the 
effects of subgroups? Novak and Fuller focus on questions of "fairness":
     Is it fair or motivating to label a school as failing simply 
     because it serves more diverse students, not because it’s [sic]
     overall achievement level is lower? (PACE Key findings page 1)



     Does the adequate yearly progress (AYP) strategy—with its 
     emphasis on the performance of student subgroups—fairly label
     schools as failing, or are diverse schools penalized for 
     serving a wider range of subgroups? (PACE page 3)
And the various data tabulations of NCLB outcomes in the PACE report are 
used to support a conclusion of "unfairness". For example, in their "Tale 
of Two Schools: Dinged for Diversity?" vignette, Novak and Fuller assert: 
"This seems unfair, simply an artifact of facing stiffer odds when serving 
more subgroups." (PACE p.5) 

My attempt to explain the logical fallacy in presentations like that of 
Novak and Fuller is to appeal to the important distinction between 
"equality of results" and "equality of opportunity". The tabulated 
accountability results are empirical outcomes from complex confounded 
factors, as schools differ in many ways other than number of reported 
(overlapping) subgroups. (Granted, Novak and Fuller at least make a gesture 
to the complexity with some cross-classifications.) But disparity in 
results does not imply unfairness (unequal opportunity). In particular, the 
magnitudes of any observed disparity in results cannot be taken as 
estimates of unfairness (inequality of opportunity). 

A very similar and equally flawed analysis of the effect of subgroups on 
the properties of a school accountability system is the presentation in 
Kane and Staiger (2002, esp. Table 4), using results from the California 
API award programs. Kane and Staiger assert as their Lesson 2: "Incentive 
systems establishing separate thresholds for each racial or ethnic subgroup 
present a disadvantage to racially integrated schools"(p. 258), and Kane-
Staiger further state in their conclusion: "rules making any rewards 
contingent on improvement in each racial group present a great disadvantage 
to integrated schools and generate a number of perverse incentives that may 
harm rather than help minority students" (p.269). For refutation of these 
specific claims in Kane-Staiger see Rogosa (2002a, section 4) which also 
provides a catalog of the many blunders in the Kane-Staiger assertions of 
volatility in test scores (c.f., Rogosa 2003b).

A major purpose of this note is to present simple probability calculations 
which provide some quantification for questions about the effects of 
subgroups. All indications are that such effects are far far less than that 
claimed by the PACE report. Two sets of calculations use an "on the margin" 
logic--what is the effect on probability of award or probability of 
meeting the AMO if another subgroup is added? The first set of artificial 
binomial calculations for NCLB follow the development in Rogosa (2003a); 
the advantage of those rudimentary calculations is their accessibility to 
say a high school student with a knowledge of the binomial distribution and 
basic spreadsheet computing skills. The second set of calculations use 
actual California school test data to provide examples of the effects of 
subgroups on properties of the California GPA award program. What's 
important is style and logic of these calculations, rather than their 
details; additional examples with California data or from other states 
would be desirable.



Small Note #1. How far apart is "similar" achievement?

The full statement in the PACE Key Findings
     Schools serving middle-class children, for example, are 28
     percent more likely to be labeled “needs improvement” by the 
     feds when serving five student subgroups than schools serving
     one group. This disparity exists even though average test 
     scores are just five percentile points apart between schools.
Examination of PACE Table 2 "Similar Student Achievement Levels across 
California Schools" shows these numbers are drawn from the collection of 
schools with "less than 25%" students economically disadvantaged. For these 
schools having 1 subgroup, 83% (of 616 schools) met AYP, whereas for these 
schools with 5 subgroups, 55% (of 107) met AYP. Novak and Fuller draw 
conclusions about the effects of subgroups by claiming these two sets of 
schools do not differ much in their overall educational performance--
"average test scores are just five percentile points apart between 
schools". In the PACE report text and in their Table 2 test scores are 
expressed in the NCE (Normal Curve Equivalents) metric. Regrettably, 
throughout their report, Novak and Fuller treat and refer to NCE and 
percentiles as interchangeable--a serious mistake which turns out to be 
consequential. The small table below shows the reported NCE scores and the 
equivalents of those NCE score in percentiles (expressed here on a 0,1 
scale). 

                                CAT/6 NCE from             Equivalent 
                                PACE Table 2               Percentile 
                                Math    Reading          Math    Reading    
schools with 1 subgroup          64       59             .747      .665
schools with 5 subgroups         58       54             .648      .575

This table shows that the differential of 5 or 6 points in the NCE metric 
turns out to be 9 or 10 percentile points. Translating that differential 
into the California API scale (see Rogosa 2000, for such calibrations of 
the API scale) this 9 or 10 percentile point differential is equivalent to 
between 80 and 90 API points, a differential greater than the width of two 
full state deciles! By no reasonable standard are these groups of schools 
"similar". Lower scoring schools will indeed tend to fare less well in NCLB 
than higher scoring schools. 

Many other details in the PACE report merit negative comment, but the 
intent of this rebuttal is to discredit the general approach (in order to 
guide others toward better methodology) rather than to dissect the specific 
fumbles of Novak and Fuller. That said, two other specifics on the test 
score displays require clarification. It is regrettable from a mathematics 
education standpoint that Novak and Fuller use odds and proportions 
interchangeably throughout the text of the PACE report. Also the PACE 
report is inconsistent in describing the CAT/6 tests employed. In Tables 
2,3,4 the CAT/6 test is labeled Reading, but the text of the PACE report 
refers to language arts. Reading and Language Arts are separately reported 
scores of the CAT/6 battery in STAR. [Note: I did not attempt to recreate 
from the state data the test score results shown in the PACE report nor did 



I audit the tabled cross-classifications of percent disadvantaged and 
number of subgroups.]

Small Note #2. Counting (often) redundant subgroups.

As noted in various spots in the PACE report, subgroup membership overlaps 
to an extent that some subgroups are nearly redundant. Therefore, counting 
up the reported number of NCLB student subgroups as is done in PACE Tables 
1,2,3,4 can be a misleading indicator of the statistical context and 
properties. One canonical example would be a school say of 390 students 
with 387 of those students classified in the Hispanic subgroup and 386 of 
those students also classified as SocioEconomically Disadvantaged. Such a 
school would be deemed to have 2 subgroups in the PACE report tables (or 
even three subgroups if the disadvantaged Hispanic students were also 
classified EL). But clearly, if the school succeeds then all the subgroups 
succeed and vice versa. So the properties of this 2 or 3 subgroup school 
are actually equivalent to a school having no subgroups (or one subgroup if 
the school is counted as its own subgroup). A different school might well 
be composed of 3 distinct, non-overlapping, subgroups, yet the two schools 
would be considered equivalent in the PACE tabulations. Many of the 
probability calculations that follow are expressed in terms of number of 
non-overlapping subgroups. And it's useful I believe to think of many of 
the California schools with reported 5 or 6 subgroups really being 
stochastically equivalent to 3 or 4 non-overlapping subgroups. Very few 
California schools are equivalent to 5 or more non-overlapping subgroups.



CALCULATIONS PART I  
Binomial Probabilities in NCLB setting:
Comparing artificial schools with identical educational attainment

The goal of these calculations is to do what Novak and Fuller seek--
compare probabilities of NCLB success for schools that are identical except 
for the number of subgroups (diversity). But here, fairness is represented 
in terms of equality of opportunity (probability of success) rather than 
the Novak-Fuller equality of results (i.e., unfairness in terms of 
disparity of outcomes). If indeed the claim in the PACE report that 
"schools serving diverse students in California are less likely to achieve 
their growth targets" is true, it matters how much less likely. For 
example, what's the difference between two schools with equal school-wide 
educational attainment, where one school is homogeneous, composed of a 
single subgroup of size 300 and the other school is diverse, composed of 3 
non-overlapping subgroups each of size 100? Calculations accessible to a 
high school student with a knowledge of the binomial distribution and basic 
spreadsheet computing skills actually can provide useful information on 
these questions.

Construction of an artificial school.
The rough approximation to reality used in these calculations is that 
schools are entirely composed of non-overlapping subgroups. (Thus if each 
subgroup meets AMO, then school does also.) A school of size 100 could be 
composed of a single group of 100 students (in this case the subgroup is 
the school) or composed of two non-overlapping subgroups each of the 
California minimum size of 50. A school of size 600 could be composed of 4 
non-overlapping subgroups of 150 students or composed of two non-
overlapping subgroups each of size 300 (subgroup sizes kept equal merely 
for convenience in exposition). For purposes of statistical calculation 
this artificial school construction isn't as unrealistic as it may appear. 
Even though in reality subgroups do have overlapping membership, the 
overlapping subgroups are often partially or largely redundant, and 
therefore not consequential for this initial statistical analysis. Consider 
a school with two racial subgroups, African-American and Hispanic.  If all 
African-American and Hispanic students in the school are also disadvantaged 
(and represent all the disadvantaged students), then success by the 
African-American and Hispanic subgroups in meeting AMO guarantees success 
by the disadvantaged subgroup. Therefore, the school really acts as having 
2 nonoverlapping subgroups rather than the reported 3 subgroups.

Educational attainment via true proportion proficient.
For purposes here, two schools are said to have the same educational 
attainment or achievement by having the same value of true proportion 
proficient. (If students could be drawn from the school population 
repeatedly and given very long tests, the average of these proportions 
proficient would converge to this "true" value.) The observed proportion 
proficient measure used in NCLB does indeed have some associated 



statistical uncertainty, commonly described as resulting from sampling 
variability in drawing the specific students tested and from measurement or 
classification error in the NCLB subject test instruments (here the CST) 
and can be thought of as a version of "true" proportion proficient that is 
obscured by statistical variability. Conversely, the underlying educational 
achievement (e.g., "true" proportion proficient) can be thought of as the 
observed proportion stripped of its statistical uncertainty.

Binomial calculations for probability of meeting AMO.
The core of the calculations use the binomial distribution to compute for 
any group or subgroup of size n and true proportion proficient pi the 
probability of meeting the AMO. Or, inversely, to solve for the true 
proportion proficient necessary to meet the AMO with high probability (e.g. 
probability .99). Of course if two schools have similar probability of 
success, the concept of fairness, as stated in terms of equality of 
opportunity, is satisfied. The binomial calculations do represent in a 
common form the statistical uncertainty resulting from the sampling of 
students from the school population. In addition, the observed proportion 
proficient is affected by measurement error in the CST. Harcourt (2002) 
indicates score reliabilities CST tests at or above .9.  For these 
reliability values the effect of measurement error is not large. More 
complex versions of these calculations (incorporating exact results for the 
bias and sampling variability of the observed proportion proficient) can be 
constructed, but that would seem to be technical overkill for the 
relatively simple task of getting some handle on the effects of subgroups.

RESULTS

The starting point is Table 1, "Required School-level True Proportion 
Proficient for Subgroups of Equal Size and Equal Attainment".  Separate 
results are given for English and math with the performance goal being the 
NCLB Annual Measurable Objective (AMO); in California for 2003-2005 the AMO 
values for grades 2-8 are set to .136 for English/Language Arts and to .16 
for mathematics (scores obtained from the California Standards Tests, CST). 
The entries of Table 1 are values of true proportion proficient that are 
large enough to give probability .99 that the observed proportion 
proficient will meet the AMO. The point of the previous report  
"California's AMOs Are More Formidable Than They Appear"(Rogosa, 2003a) was 
to quantify the effects of statistical uncertainty in the proportion 
proficient scores in these terms: to have high probability that school and 
all subgroup scores meet the criteria (AMO) requires underlying educational 
performance that exceeds (blows through) the seemingly modest AMO values. 
For example, in Table 1, a school of 200 students, comprised of two 
subgroups each of size 100, requires true proportion proficient in English 
.239 and math .263, values that exceed the respective AMOs by .103 and 
which translate into about 20 additional truly proficient students in each 
subject. Note that built into the structure of Table 1 is the requirement 
that all subgroups in a school have the same true proportion proficient, 
the school-wide value.



These same calculations allow examination of the effect of subgroups by 
asking how much does the required true proportion proficient increase as 
the number of subgroups increase. Going across rows in Table 1 would 
indicate for both English and math an increase of .02 to .025 in true 
proportion proficient moving from the 0/1 (single subgroup is the school) 
column to the 5 non-overlapping subgroup column. Given that Novak and 
Fuller are happy to consider 6 percentile point differences in test score 
outcomes as within the meaning "similar", a difference of 2 points in 
percent proficient over that very wide range of non-overlapping subgroups 
would seem to be a rather puny effect. 

                    Insert Table 1

Another way to express the results in Table 1 is to keep true proportion 
proficient at the value in the 0/1 subgroup column and ask how much 
decrease in probability of meeting AMO results from additional subgroups. 
For Table 1 setting the answer is a decrease in probability of .01 for each 
additional subgroup. Thus a level of true educational attainment that gives 
probability .99 of meeting AMO for a completely homogeneous school 
(comprised of one subgroup, subgroup is the school) would give probability 
.951 of meeting AMO for an extremely diverse school comprised of 5 non-
overlapping subgroups (and very few schools in California are that 
diverse). That result holds for both subjects and is constant over subgroup 
size as shown below. Many other versions of this calculation can be done;
---------------------------------------------------------------------------
      Effects on probability of meeting AMO of additional subgroups
              Number of Non-overlapping Subgroups
             0/1      2       3       4        5
    n
    50              0.98    0.97    0.961    0.951
    100     0.99    0.98    0.97    0.961    0.951
    200     0.99    0.98    0.97    0.961    0.951
----------------------------------------------------------------------------
for example starting with the level of true proportion proficient required
to have probability .95 of meeting AMO for a school comprised of two
non-overlapping subgroups will indicate that each additional subgroup
will reduce the probability of meeting AMO by almost .025. 

AYP Requires Meeting Both AMOs.
The results above treat English and math separately. To speak in terms of 
satisfying AYP requires calculations for the joint probabilities of meeting 
both the English and math AMO.  Because the same students take both the 
math and English tests, the two tests are not independent, but also not 
redundant (math ability and English ability are not matched perfectly over 
students and measurement variability in the two tests is regarded as 
independent).  For two independent trials, the probability of success on 
both trials would be .985 for two trials each with probability of success 
.99 and .903 for two trials each with probability of success .95. Taking 
typical within-school correlations of English and math around .7 indicates 
the joint pass probabilities are approximately .985 for single trial 
probability .99 and .926 for .95. Thus the AYP version (below) of the AMO 
table (above) shows a decrease in AYP probability of about .015 for each 



Table 1 
Required Educational Attainment (School-level True Proportion Proficient)
for Subgroups of Equal Size and Equal Attainment

School-level True Proportion Proficient Required for All 
Subgroups each of Size n to Meet English Performance Goal 
.136 with Probability .99

                Number of Non-overlapping Subgroups
             0/1       2        3        4        5
    n
    50               0.284    0.293    0.3      0.305
    75               0.264    0.271    0.277    0.28
    100     0.228    0.239    0.245    0.25     0.253
    125     0.213    0.223    0.229    0.232    0.235
    150     0.211    0.22     0.225    0.228    0.231
    175     0.202    0.21     0.215    0.218    0.22
    200     0.201    0.208    0.213    0.215    0.218

School-level True Proportion Proficient Required for All
Subgroups Each of Size n to Meet Mathematics Performance Goal 
.16 with Probability .99

                Number of Non-overlapping Subgroups
             0/1       2        3        4        5
    n        
    50               0.309    0.319    0.325    0.33
    75               0.28     0.288    0.293    0.297
    100     0.252    0.263    0.27     0.274    0.277
    125     0.242    0.252    0.257    0.261    0.264
    150     0.234    0.243    0.248    0.252    0.254
    175     0.228    0.237    0.241    0.245    0.247
    200     0.224    0.232    0.236    0.239    0.241



additional subgroup (i.e., .97 for two subgroups decreases to .94 for four 
non- overlapping subgroups).
---------------------------------------------------------------------------
      Effects on probability of meeting AYP of additional subgroups
              Number of Non-overlapping Subgroups
             0/1      2       3       4        5
    n
    50              0.970   0.956   0.941    0.927
    100     0.985   0.970   0.956   0.941    0.927
    200     0.985   0.970   0.956   0.941    0.927
----------------------------------------------------------------------------

What are the most obvious weaknesses of the Table 1 formulation? One is 
that although schools with more subgroups tend to be larger, the size 
differential (even if calibrated for non-overlapping groups) is smaller 
than proportional to the number of subgroups as in the Table 1 structure. 
That's why there is a Table 3. Second, not all subgroups have equal 
educational ability (underlying performance) as is required in the Table 1 
structure. That's why Table 2 introduces laddered subgroup true proportion 
proficient, allowing school-wide true proportion proficient to remain 
constant even though subgroups differ in their own true proportion 
proficient. Also, the heterogeneity in ability is constant across the 
various subgroup configurations.  The calculations using the Table 1 
specification emphasize settings in which the true educational attainment 
provides high probability of meeting AMO. Even so, the true proportion 
proficient values are modest (.2 to .3). Of course, if the school-wide true 
proportion proficient is much nearer the AMO, then failure to meet the AMO 
in school or subgroup scores due to statistical variability in the observed 
proportion proficient is likely, and the effect of subgroups will appear 
larger. For example, if English true proportion proficient is .156, the 
probability of school with subgroups of 100 students meeting the AMO of 
.136 is only .71 for a single subgroup and reduces to .26 with four non-
overlapping subgroups. This sort of result fits in with the previously 
expressed theme that statistical variability makes the AMO more formidable 
than it might appear.



Subgroups with heterogeneous true proportions proficient.

In Table 1 all subgroups are constrained to have the same true proportion 
proficient, so that the school-wide true proportion proficient also 
pertains to each of the subgroups. Calculations for Table 2 are somewhat 
less unrealistic in relaxing that constraint. Specifically, Table 2 
calculations employ a laddered set of true proportion proficient values 
constructed by deviation of a set amount from the school-wide proportion 
proficient. These displacement values allow the same school-wide true 
proportion proficient for artificial schools with differing numbers 
(2,3,4,5) of non-overlapping subgroups as each of the set of displacements 
have mean 0. In addition these values are chosen to equalize the 
heterogeneity by each set of displacement values having variance 2/300.
--------------------------------------------------------------------------
Laddering of Subgroup True Proportion Proficient

number of         Displacement from school wide true proportion proficient
subgroups
    2                    {-Sqrt[2/3] , Sqrt[2/3]}/10
    3                    {-1,   0,    1}/10
    4                    {-1, -Sqrt[1/3], Sqrt[1/3], 1}/10
    5                    {-1, -Sqrt[2/3], 0,  Sqrt[2/3], 1}/10

where Sqrt[1/3] = .577, Sqrt[2/3] = .816.
--------------------------------------------------------------------------

Table 2 displays the school-wide true proportion proficient required for 
probability .99 that the school and all subgroups meet the AMO. Thus the 
school comprised of 3 subgroups of size 100, 300 students total, has in 
Table 2 school-wide true English proportion proficient .328, with the three 
subgroups having the values for true proportion proficient for English 
{.228, .328, .428}. Values of school-wide true proportion proficient in 
Table 2 are of course larger than corresponding values in Table 1 because 
failures to meet AMO will be driven by the subgroup with the lowest true 
proportion proficient. The differential is less than .1, the span of the 
displacement. Of most interest here is the increase in required school-wide 
true proportion proficient is around .02 moving from schools with two non-
overlapping subgroups to schools with 5 non-overlapping subgroups. That 
small increase is about twice as large as was seen under the homogeneity 
constraints in Table 1. Calibrating the effect of subgroups in terms of 
reduction of the probability of meeting AMO, as was done above, a school 
with five subgroups having the school-wide true proportion proficient value 
required for a school with two subgroups to meet the AMO with probability 
.99 has probability .962 of meeting the AMO. Thus in this setting the 
"diversity penalty" measured as effect of two subgroups versus five non-
overlapping subgroups for schools with identical school-wide educational 
attainment is a reduction in the probability of meeting the AMO of less 
than .03.

                    Insert Table 2



Table 2 
Required Educational Attainment (School-level True Proportion Proficient)
for Subgroups of Equal Size and Laddered Attainment

--------------------------------------------------------------------------
Laddering of Subgroup True Proportion Proficient

number of         Displacement from school wide true proportion proficient
subgroups
    2                    {-Sqrt[2/3] , Sqrt[2/3]}/10
    3                    {-1,   0,    1}/10
    4                    {-1, -Sqrt[1/3], Sqrt[1/3], 1}/10
    5                    {-1, -Sqrt[2/3], 0,  Sqrt[2/3], 1}/10

where Sqrt[1/3] = .577, Sqrt[2/3] = .816.
--------------------------------------------------------------------------

School-level True Proportion Proficient Required for All 
Subgroups each of Size n to Meet English Performance Goal 
.136 with Probability .99

           Number of Non-overlapping Subgroups
           with Laddered Attainment
              2        3        4        5
    n
    50      0.349    0.367    0.371    0.377
    100     0.31     0.328    0.329    0.332
    150     0.293    0.311    0.311    0.314
    200     0.283    0.301    0.301    0.303
    250     0.271    0.29     0.29     0.291
    300     0.267    0.286    0.286    0.286

School-level True Proportion Proficient Required for All
Subgroups Each of Size n to Meet Mathematics Performance Goal 
.16 with Probability .99

           Number of Non-overlapping Subgroups
           with Laddered Attainment
              2        3        4        5      
    n
    50      0.374    0.392    0.396    0.402
    100     0.333    0.352    0.353    0.356
    150     0.316    0.334    0.335    0.337
    200     0.305    0.324    0.324    0.326
    250     0.298    0.317    0.317    0.318
    300     0.293    0.312    0.312    0.313



Constant School Size, Increasing Number of Subgroups

Table 3 presents, in some sense, the worst-case scenario for the effects of 
subgroups. School size is held constant as the number of subgroups 
increases such that a computation for a school with 300 students compares 
two subgroups of size 150 with five subgroups of size 60. (True proportion 
proficient for all subgroups is constrained to be the same as the school-
wide value as in Table 1.) Table 3 is a bookend to Table 1 in bracketing 
reality. Schools with larger numbers of subgroups do not necessarily have 
proportionately smaller subgroups. Even so, the increase in the required 
true proportion proficient in schools of size 600 from 0/1 column to the 5 
non-overlapping column is less than .08. Slightly larger effects are driven 
not by the diversity but by the smaller size (i.e., larger statistical 
variability) of the multiple subgroups (e.g., 5 subgroups in a school of 
size 300 have 60 students each).

                    Insert Table 3



Table 3
School-level True Proportion Proficient Required for All 
Subgroups of equal size to Meet AMO: Constant School Size

English, School Size 150
                        Number of Non-overlapping Subgroups
probability of           0/1       2        3        4        5
meeting AMO
   .90                  0.176    0.215    0.234 
   .95                  0.188    0.231    0.254 
   .99                  0.211    0.264    0.293 

English, School Size 300                                                  
                        Number of Non-overlapping Subgroups      
probability of           0/1       2        3        4        5  
meeting AMO                                                      
   .90                  0.162    0.187    0.206    0.231    0.25            
   .95                  0.17     0.198    0.219    0.246    0.267           
   .99                  0.186    0.22     0.245    0.277    0.302           

English, School Size 600                                                  
                        Number of Non-overlapping Subgroups      
probability of           0/1       2        3        4        5  
meeting AMO                                                      
   .90                  0.155    0.17     0.186    0.198    0.21            
   .95                  0.16     0.177    0.195    0.208    0.222           
   .99                  0.171    0.191    0.213    0.228    0.244 
-------------------------------------------------------------------

Math, School Size 150
                        Number of Non-overlapping Subgroups
probability of           0/1       2        3        4        5
meeting AMO
   .90                  0.198    0.23     0.258 
   .95                  0.21     0.247    0.278 
   .99                  0.234    0.28     0.319 

Math, School Size 300                                                  
                        Number of Non-overlapping Subgroups      
probability of           0/1       2        3        4        5  
meeting AMO                                                      
   .90                  0.187    0.21     0.229    0.246    0.27            
   .95                  0.195    0.221    0.242    0.262    0.288           
   .99                  0.212    0.243    0.27     0.293    0.323           

Math, School Size 600                                                  
                        Number of Non-overlapping Subgroups      
probability of           0/1       2        3        4        5  
meeting AMO                                                      
   .90                  0.179    0.195    0.209    0.221    0.239           
   .95                  0.185    0.203    0.218    0.231    0.251           
   .99                  0.196    0.218    0.236    0.252    0.274           



CALCULATIONS PART II: 
Probabilities for API Awards using California School Data

Unlike NCLB, the California award programs, such as the GPA, were based on 
year to year improvement. Calculations on the effect of subgroups on the 
probability of award start with data from some California elementary 
schools, increment that data by a specified amount of true improvement and 
use bootstrap resampling to calculate the probability of meeting the award 
criteria (school and all significant subgroups meet their growth targets). 
Such calculations were previously conducted as part of the refutation of 
the claims in Kane and Staiger (2002), who assert "great disadvantage" 
(p.269) to schools with more subgroups: "at any given level of overall 
improvement, a racially integrated school is much less likely to win an 
award than a racially homogeneous school" (p.258) (c.f., Rogosa 2002a, 
section 4). In Rogosa (2002a,b) the subgroup criteria are seen to be very 
important in reducing false positives and in making the growth targets more 
formidable than the small numerical values would indicate. 

Start by considering three elementary schools of median school size and 
Decile 5 (approximately median) performance which contrast on number of 
significant subgroups: two, three and four. (Note: 97% of decile 5 schools 
have 2, 3 or 4 subgroups, 85% of all Elementary schools have 2,3 or 4 
subgroups). This setting of constant school size with increasing number of 
subgroups resembles the Table 3 formulation, which was considered as a 
worst case setting in demonstrating the largest effect of subgroups. The 
three elementary schools are:

CDS 56726036055735     CDS 19643376011951          CDS 19648816021653
n= 358, se(API)=12.7   n= 350, se(API)=13.7        n= 341, se(API) = 14.9 
2 Sig Subgroups:       3 Sig Subgroups:            4 Sig Subgroups: 
Hispanic(124),         Soc Dis (221),              Soc Dis (192), AfAm(134)
White(209)             Hispanic(189), White(119)   Hispanic(123), White(53)

Table 4 shows the probabilities of GPA Award Eligibility for three schools 
used for this example, all Decile 5 and medium size (~50th percentile). 
Explaining the structure of Table 4 requires introduction of some new 
quantities. The award probabilities, both for the existing CDE GPA rules 
and for the margin of error modifications, are expressed as a function of 
the Incrementation (rows).  This representation of school improvement has 
two forms: Integer Incrementation (Ik) and Partial Incrementation (Pk). In 
Integer Incrementation (Ik) every student increases k percentile points on 
each test. Partial Incrementation (Pk) provides an intermediate improvement 
between the levels of the Integer Incrementation. For grades 2-8, each 
student increases k percentile points on math and k-1 on the other 3 tests 
(Reading, Lang., Spell).  In Table 4 the form of incrementation (Ik, Pk, 
k=0,...,6) is shown in the Incrementation column, and the school API score 
resulting from the Incrementation is given in the API column (note: "Base" 
is I0). (In Section 2 of Rogosa 2000 these forms of incrementation, and 
their consequences for API scores, are covered in detail.)

The calculation of probability of award for a specific incrementation is 



done by bootstrap resampling because subgroups overlap with each other 
(i.e., SD subgroup) and with the full school. The calculation starts with 
the actual 1999 data for the school. First increase all student scores 
according to the incrementation protocol; then resampling (e.g. 10000 
bootstrap resamples) is used to estimate the probability of award for that 
specified true improvement. These calculations address: What is the 
probability of award for a specified true improvement? The "Base (I0)" row 
provides information about false positives: the probability of achieving 
award status due to statistical variability alone (no real improvement). 

                    Insert Table 4

The comparison of interest here is whether the award probabilities decrease 
markedly with greater number of subgroups. Figure 1 displays a smooth curve 
for these probabilities plotted against real API improvement. "Great 
disadvantage" is awfully hard to discern, but a small effect for subgroups, 
as is to be expected, is present. A numerical measure for these examples 
that match the schools on school size and performance is that schools with 
3 versus 4 subgroups are separated overall by probability of award 
differential .004, and schools with 2 versus 4 subgroups are separated 
overall by probability of award differential .04 . (Different examples may 
show a larger effect for 3 versus 4 subgroups with two schools of the same 
size.)

                     Insert Figure 1

Schools with more subgroups do tend to have lower API scores. In the table 
of descriptive statistics below each row is the number of subgroups (1 to 
5), then the number of 1999 elementary schools having that number of 
subgroups, then summary statistics for the corresponding API scores. Almost 
all of the 14% of Elementary schools having only one numerically 
significant subgroup are highly successful (deciles 8-10) small schools 
drawing from relatively advantaged populations. This confounding will badly 
warp any "equality/disparity of results" analysis to detect the effects of 
subgroup on award probabilities.
---------------------------------------------------------------------------
Descriptive Statistics: API by NSig: 1999 Elem Schools
 NSig       N       Mean     Median         Q1         Q3 
 1        691     773.13     797.00     736.00     844.00
 2       1660     602.60     581.00     466.25     730.75 
 3       1941     608.81     608.00     535.50     684.00 
 4        496     617.61     616.00     536.00     689.75 
 5         41     626.6      633.0      527.5      708.0 
--------------------------------------------------------------------------- 

A different comparison consists of two decile 5 Elementary schools with two 
significant subgroups and approximately 150 students, and a decile 5 
Elementary school with three significant subgroups and approximately 250 
students. The table below shows that a somewhat larger school with 3 
significant subgroups has a slightly greater overall probability of GPA 
award than the smaller schools with 2 significant subgroups. This example 



API true improvement

P{GPA award}

nsig=2

nsig=3

nsig=4

Figure 1. Plot of probability of GPA award as a function of true API improvement, resulting
from Ik, Pk incrementation (k=0,...,6) for three decile 5 elementary schools of median
size with 2,3,4 numerically significant subgroups.

Probability of California GPA award for equal sized
schools with 2,3,4 numerically significant subgroups

Table 4. Probabilities of California GPA Award Eligibility for Decile 5 Elementary Schools
of Medium Size (~50th percentile)

CDS 56726036055735 CDS 19643376011951 CDS 19648816021653

n= 358, se(API) = 12.7 n= 350, se(API) = 13.7 n= 341, se(API) = 14.9

2 Sig Subgroups: 3 Sig Subgroups: 4 Sig Subgroups:

Hispanic(124), Soc Dis (221), Soc Dis (192), AfAm(134)

White(209) Hispanic(189), White(119) Hispanic(123), White(53)

Incrementation API PrAPI&Subgr>Targ1 API PrAPI&Subgr>Targ1 API PrAPI&Subgr>Targ1

P0 610 0.0511 610 0.0655 617 0.0697

Base 615 0.1080 613 0.1010 620 0.0994

P1 620 0.1731 615 0.1275 621 0.1137

I1 624 0.2792 621 0.2446 626 0.1950

P2 627 0.3294 624 0.3111 631 0.2791

I2 633 0.4753 630 0.4590 635 0.3798

P3 635 0.5520 634 0.5321 637 0.4290

I3 641 0.7375 640 0.6515 641 0.5108

P4 645 0.8153 642 0.7136 645 0.6159

I4 650 0.8911 647 0.7927 649 0.6990

P5 655 0.9439 651 0.8639 651 0.7555

I5 659 0.9711 658 0.9299 657 0.8679

P6 662 0.9784 661 0.9564 660 0.8964

I6 667 0.9919 668 0.9832 665 0.9400

and Varying Number of Numerically Significant Subgroups



of probability calculations represents another reasonable counterexample to 
the Kane-Staiger and Novak-Fuller assertions both of which are based on 
(highly confounded) equality of results criteria.
---------------------------------------------------------------------------
                        Decile 5 Elementary Schools

CDS  37682136038681      CDS  41689736044226       CDS  36679596037410     
n=143, se(API)=19.5      n=174, se(API)=18.7       n=244, se(API)=14.3 
2 Sig Subgroups:         2 Sig Subgroups:          3 Sig Subgroups:        
Soc Dis(80)              Hispanic(66)              Soc Dis(44)             
White(85)                White(47)                 Hispanic(69) White(161) 
                            
       Probability of GPA Award Averaged over Ik, Pk Incrementation         
   0.513                    0.484                      0.524
--------------------------------------------------------------------------- 
 



Final Thoughts

It seems useful to conclude on a note of concordance with the PACE report. 
In their final recommendations Novak and Fuller state: "Washington could 
respect states’ own methods for determining achievement growth within 
schools" (page 9). That's an important statement worthy of further 
comment.

This rebuttal is properly thought of as a defense of good statistical 
reasoning and practice rather than a defense of NCLB. Regrettably, NCLB 
AYP requirements are poorly thought out and egregiously overreach. One can 
applaud with unending vigor the statements and sentiments of Education 
Secretary Paige "Only if we hold schools and school districts accountable 
for the improved achievement of all students will we meet the goal of 
leaving no child behind," while decrying the details of NCLB. More broadly, 
the NCLB tragedy is that a state like California is forced to replace a 
functioning and defensible accountability system with NCLB. 

The lesson from previous work with the California API and the associated 
award programs is that statistical variability in the school and subgroup 
scores makes growth targets far more formidable than they might appear, in 
large part because of the subgroup requirements (as each of the subgroups 
has larger uncertainty than the school index). In the API award context, to 
have high probability that school and all subgroup scores meet the 
improvement criteria requires underlying improvement that far exceeds 
(blows through) the seemingly modest growth targets (Rogosa, 2002a, 2002b, 
2002c). Therefore, a useful accountability strategy is to set modest 
improvement goals in order for successful schools and their subgroups to 
have high probability of meeting these conjunctive standards (c.f., the 
herding cats metaphor in Rogosa, 2002a,b,c). Sadly, the federal mandates of 
NCLB ignore these important lessons. 

In particular, NCLB differs from California PSAA accountability by adding 
on additional subgroup categories. There can be too much of a good thing, 
and there is a point where the resulting statistical properties lead to a 
dysfunctional accountability system. The consequences of these additional 
NCLB subgroup categories deserve scrutiny, and a good PACE study would 
empirically demonstrate the undesirable effects of all the added subgroups 
in NCLB.  That is, determine whether a school would have satisfied AYP if 
NCLB subgroups were restricted to the PSAA/API subgroups? Novak and Fuller 
do discuss the role of EL subgroups, and that would be a useful direction 
to pursue.
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APPENDIX  [added Jan 25, 2004]

             I. Heterogeneity Trumps Number of Subgroups
             
A related calculation that I probably should have included in the main 
rebuttal illustrates the obvious--in NCLB the probability of failing to 
meet AMO is driven by the lowest achieving subgroup (regardless of whether 
there are few or many subgroups). In NCLB, a school is evaluated on the 
basis of its lowest-scoring subgroup not on the average achievement in the 
school (min not mean). Consider two schools of equal size, each with 
school-wide true proportion proficient .5 and each school having two 
equally sized subgroups. In the first school the two subgroups are of equal 
ability (therefore that school is close to assured of meeting the AMO which 
is below .2). The second school is extremely heterogeneous with one 
subgroup of very high academic achievement (true proportion proficient .9) 
and the other subgroup of low academic achievement (true proportion 
proficient .1) so that this school is unlikely to satisfy the California 
AMO of .16. Because NCLB focuses on the performance of the lowest 
performing subgroup rather than on the school mean, by design, two schools 
with the same mean can have different probabilities of satisfying NCLB. 

The interesting result of the calculations is how much more sensitive the
NCLB criterion is to small heterogeneity in the subgroups rather than
to the number of subgroups. Table A1 considers the comparison of schools
with two equally sized subgroups, with the subgroups having educational
attainment represented by p + k and p - k, where p is the school-wide
true proportion proficient. For k > 0 there exists some heterogeneity
in that the subgroups differ (by 2k) in their educational attainment.
--------------------------------------------------------------
Table A1 
School-level True Proportion Proficient Required for both
Subgroups Each of Size n to Meet Math AMO .16 with Probability 
.99 in the Presence of Heterogeneity k

                     Heterogeneity k
              0       .025     .05      .075     .01
    n        
    50      0.309    0.32     0.342    0.367    0.392
    100     0.263    0.277    0.302    0.327    0.352
    150     0.243    0.259    0.284    0.309    0.334
    200     0.232    0.249    0.274    0.299    0.324
    250     0.224    0.242    0.267    0.292    0.317
    300     0.218    0.237    0.262    0.287    0.312
---------------------------------------------------------------      
The first column in Table A1 (heterogeneity 0) reproduces entries the 2 
subgroup column in Table 1. Take subgroups of size 100 and see that the 
required school-wide true proportion proficient increases to .277 if the 
two subgroups are .05 different (the k=.025 column). Refer to Table 1 and 
note that this required increase to .277 is identical to the effect of 
moving from a school of 2 subgroups to 5 subgroups (all of size 100). Close 
equivalence are also seen for the other sub-group sizes. A small amount of 



heterogeneity between the groups has the same effect as a large change in 
number of subgroups.

The calculations for Table A2 repeat this comparison employing a lower 
probability of satisfying NCLB Math requirements, probability .9 instead of 
.99. The top frame of Table A2 is a display like Table 1 showing the effect 
of increasing the number of equivalent subgroups. The lower frame repeats 
the display of Table A1, showing the effect of increasing heterogeneity 
between two equal sized subgroups. Again, the effect of small heterogeneity 
is equivalent to a large increase in the number of subgroups. For subgroups 
of size 200 the increase in the required school-wide true proportion 
proficient .203 to .218 resulting from heterogeneity .025 is larger that 
that from increasing the number of subgroups from 2 to 5 (.203 to .215). 
For small subgroups of size 50 the increase in the required school-wide 
true proportion proficient .246 to .275 resulting from heterogeneity .05 is 
larger than that from increasing the number of subgroups from 2 to 5 (.246 
to .272).

----------------------------------------------------------------
Table A2
Comparison of Number of Subgroups and Heterogeneity for Probability
.9 of Meeting Math AMO .16 with Probability .90

School-level True Proportion Proficient Required for All
Subgroups Each of Size n to Meet Mathematics Performance Goal 
.16 with Probability .90

          Number of Non-overlapping Subgroups
             2        3        4        5
    n        
    50     0.246    0.258    0.266    0.272
    75     0.23     0.24     0.246    0.251
    100    0.221    0.229    0.235    0.239
    125    0.215    0.222    0.226    0.23 
    150    0.21     0.216    0.221    0.224
    175    0.206    0.212    0.216    0.219
    200    0.203    0.209    0.212    0.215

School-level True Proportion Proficient Required for both
Subgroups Each of Size n to Meet Math AMO .16 with Probability 
.90 in the Presence of Heterogeneity k

                     Heterogeneity k
              0       .025     .05      .075     .01
    n        
    50      0.246    0.255    0.275    0.299    0.324 
    100     0.221    0.233    0.256    0.281    0.306 
    150     0.21     0.223    0.248    0.273    0.298 
    200     0.203    0.218    0.243    0.268    0.293 
    250     0.198    0.215    0.239    0.264    0.289 
    300     0.195    0.212    0.237    0.262    0.287 
---------------------------------------------------------------



                 II. Computational Functions

For completeness, below are code snippets for the basic functions used to 
generate the tabled values.

Table 1
readTab1 = 
  Table[pi /. 
      FindRoot[(1 - CDF[BinomialDistribution[n, pi], Floor[.135999*n]])^
            i == .99, {pi, .3}] , {n, 50, 200, 25}, {i, 1, 5}]
mathTab1 = 
  Table[pi /. 
      FindRoot[(1 - CDF[BinomialDistribution[n, pi], Floor[.15999*n]])^
            i == .99, {pi, .3}] , {n, 50, 200, 25}, {i, 1, 5}]

Table 2
k = Sqrt[2/3.]; pList2 = {-k, k}/10; pList3 = {-1, 0, 1}/
    10. ; pList4 = {-1, -Sqrt[1/3.], Sqrt[1/3.], 1}/10 ; 
    pList5 = {-1, -k, 0, k, 1}/10;
Table[pi /.FindRoot[
      Product[1 - 
            CDF[BinomialDistribution[n, pi + pList2[[i]]], 
              Floor[.135999*n]], {i,1,
            Length[pList2]}] \[Equal] .99, {pi,.3}] , {n, 50, 300,50}]
Table[pi /.FindRoot[
      Product[1 - 
            CDF[BinomialDistribution[n, pi + pList3[[i]]], 
              Floor[.135999*n]], {i,1,
            Length[pList3]}] \[Equal] .99, {pi,.3}] , {n, 50, 300,50}]
Table[pi /.FindRoot[
      Product[1 - 
            CDF[BinomialDistribution[n, pi + pList4[[i]]], 
              Floor[.135999*n]], {i,1,
            Length[pList4]}] \[Equal] .99, {pi,.3}] , {n, 50, 300,50}]
Table[pi /.FindRoot[
      Product[1 - 
            CDF[BinomialDistribution[n, pi + pList5[[i]]], 
              Floor[.135999*n]], {i,1,
            Length[pList5]}] \[Equal] .99, {pi,.3}] , {n, 50, 300,50}]
Table[pi /.FindRoot[
      Product[1 - 
            CDF[BinomialDistribution[n, pi + pList2[[i]]], 
              Floor[.15999*n]], {i,1,
            Length[pList2]}] \[Equal] .99, {pi,.3}] , {n, 50, 300,50}]
Table[pi /.FindRoot[
      Product[1 - 
            CDF[BinomialDistribution[n, pi + pList3[[i]]], 
              Floor[.15999*n]], {i,1,
            Length[pList3]}] \[Equal] .99, {pi,.3}] , {n, 50, 300,50}]



Table[pi /.FindRoot[
      Product[1 - 
            CDF[BinomialDistribution[n, pi + pList4[[i]]], 
              Floor[.15999*n]], {i,1,
            Length[pList4]}] \[Equal] .99, {pi,.3}] , {n, 50, 300,50}]
Table[pi /.FindRoot[
      Product[1 - 
            CDF[BinomialDistribution[n, pi + pList5[[i]]], 
              Floor[.15999*n]], {i,1,
            Length[pList5]}] \[Equal] .99, {pi,.3}] , {n, 50, 300,50}]

Table 3
conflist = {.9,.95,.99}
readTabNS150 =
  Table[pi /.FindRoot[(1 - 
                CDF[BinomialDistribution[150/i, pi], Floor[.135999*150/i]])^
            i \[Equal] conflist[[jj]], {pi,.3}] ,  {jj,1,3}, {i,1,3}]
readTabNS300 =
  Table[pi /.FindRoot[(1 - 
                CDF[BinomialDistribution[300/i, pi], Floor[.135999*300/i]])^
            i \[Equal] conflist[[jj]], {pi,.3}] ,  {jj,1,3}, {i,1,5}]
readTabNS600 =
  Table[pi /.FindRoot[(1 - 
                CDF[BinomialDistribution[600/i, pi], Floor[.135999*600/i]])^
            i \[Equal] conflist[[jj]], {pi,.3}] ,  {jj,1,3}, {i,1,5}]
mathTabNS150 =
  Table[pi /.FindRoot[(1 - 
                CDF[BinomialDistribution[150/i, pi], Floor[.15999*150/i]])^
            i \[Equal] conflist[[jj]], {pi,.3}] ,  {jj,1,3}, {i,1,3}]
mathTabNS300 =
  Table[pi /.FindRoot[(1 - 
                CDF[BinomialDistribution[300/i, pi], Floor[.15999*300/i]])^
            i \[Equal] conflist[[jj]], {pi,.3}] ,  {jj,1,3}, {i,1,5}]
mathTabNS600 =
  Table[pi /.FindRoot[(1 - 
                CDF[BinomialDistribution[600/i, pi], Floor[.15999*600/i]])^
            i \[Equal] conflist[[jj]], {pi,.3}] ,  {jj,1,3}, {i,1,5}]

Table A1
kList2 = {-k, k}
Table[pi /.FindRoot[
      Product[1 - 
            CDF[BinomialDistribution[n, pi + kList2[[i]]], 
              Floor[.15999*n]], {i,1,
            Length[kList2]}] \[Equal] .99, {pi,.3}] , {n, 50, 300,50}, {k, 
    0, .1, .025}]




