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Comparing Nonparallel Regression Lines

David Rogosa
Department of Education, University of Chicago

Statistical comparisons of experimental groups frequently are based on the
within-group regressions of an outcome variable on a concomiiant variable. I
present a comprehensive strategy for the statistical comparison of within-group
regressions that is suitable for both parallel and nonparallel regression lines. New
results are obtained and new interpretations are formulated for standard
statistical procedures such as analysis of covariance. New procedures for com-
paring regressions are proposed and illustrated.

The setting for this investigation is an ex-
periment in which two groups are given alter-
native treatments. The groups are formed by
random assignment of individual cases to the
groups. One of these groups may be considered
a control group, as in a study to evaluate the
effectiveness of a curricular innovation relative
to the effectiveness of a standard curriculum.
The purpose of the experiment is to assess the
treatment effect—the differential effectiveness
of the two treatments.

A number of initial characteristics (usually
called covariates or predictor variables) are re-
corded for each case before the initiation of the
treatment ; outcome variables are measured at
the end of the treatment period. I limit con-
sideration to one outcome variable (V) and one
predictor variable (X). The raw data from this
experiment are measures of X and V that are
obtained from the members of the two experi-
mental groups.

The raw data are summarized through esti-
mation of the within-group regression lines,
the average outcome for a given initial char-
acteristic value within each group. The sum-
mary of the raw data consists of (a) the separ-
ate sample within-group regression lines and
(b) estimates of the sampling variances and
covariances associated with these sample re-
gressions.

Requests for reprints should be sent to David Rogosa,
who is now at the School of Education, Stanford Uni-
versity, Stanford, California 94305.

This article presents and evaluates statistical
procedures for comparing the within-group re-
gression lines. I view the treatment effect as a
function of X and define the treatment effect
as the difference between the population re-
gression lines. The usual dichotomy between
parallel and nonparailel regressions is shunned.
The difference between the sample regression
lines is used to estimate this treatment effect,
and this estimate will depend on X (to some
degree) whenever the sample within-group re-
gressions are not parallel. Although this ap-
proach seems natural for problems of compar-
ing regressions, the development and exposition
of traditional statistical methods has proceeded
along other lines.

Two types of assessments of the treatment
effect are sought. First, an overall treatment
effect, in which dependence on X of the treat-
ment effect is ignored, can be estimated by
evaluating the difference between the sample
regression lines at a prespecified value of X.
These procedures are called pick-a-point pro-
cedures. Second, an assessment of the difference
between the regressions over the entire range
of X can be used to evaluate the treatment
effect as a function of X. The Johnson-Neyman
technique as extended by Potthoft (1964) is
one procedure in which the regressions are
compared over the range of X. Nonsimultane-
ous inference procedures are associated with
the first type of assessment, and simultaneous
inference procedures are associated with the
second type of assessment.
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First, the regression model and the basic no-
tation are presented. Then, analysis of covari-
ance (ANcova) is examined, and it is found that
the ANcova estimate of the treatment effect
is identical to an evaluation of the difference
between the sample regressions at a particular
value of X in the middle of the data. This re-
sult is used to form an interpretation of the
ANCOVA estimate that does not depend on the
assumption of parallel population regressions.
Also, a modified version of ANCOVA is proposed.
Next, an alternative overall assessment of the
treatment effect is formed from a measure of
the average distance between the within-group
regressions, and a statistical procedure based on
this measure is compared with ANcova. Then,
assessment of the treatment effect as a func-
tion of X through the use of the Johnson-Ney-
man technique is described, and comparisons
with pick-a-point procedures are developed.
Also, analytic results developed in this investi-
gation are used to expose serious logical and
technical flaws in previous simulation studies
on the robustness of ANCOVA to unequal re-
gression slopes. Finally, the methods and com-
putational procedures discussed in this article
are illustrated with a small data set.

Regression Model and
Parameter Estimation
The model for the population within- -group
regression lines allows both the slopes and in-
tercepts to differ between the twogroups. The
within-group regression model for Groups A
and B is

V,=aa+B8aX;+e;, for j=1,...,na;
-=aB+BBX,-+e,-, for j=nA+1 . N. (1)

Group A contains na cases, and Group B con-
tains #p cases; na + ns = N. The difference
between the population regression lines at a
specific value of X is A(X)=oax —oas
+ (Br — Br)X.

This regression model can be rewritten using
a dummy variable T, defined such that

Ti = 1:
Tj = 0)
Then an equivalent expression for Equation 1 is

V=814 BT + B:X, + BT;X; + ¢
for j=1,...,N. (2)

for j=1,...,m;

for j=m+1,...,N

The difference between the within-group popu-
lation slopes is B4 = Ba — Bs, and the difference
between the population regression lines evalu-
ated at X = 0 is B2 = aa — ap. Thus A(X)
= B, + B4X.

The statistical methods considered in this
article condition on the values of X that are
observed, as is conventional in regression anal-
ysis. The data can be thought of as consisting
of N X,V pairs that are a random sample from
the population bivariate distribution of X and
Y. The values of X are not chosen or fixed in
advance. However, inferences from these data
are restricted to subpopulations having the
same values or configuration of X because in-
ferences from the linear model are conditional
on the observed values of X. All distributional
statements in this article are conditional on
X unless otherwise specified. (See Kendall &
Stuart, 1967, and Sampson, 1974, for further
discussion of conditional inference in regres-
sion models.)

The distributional assumptions used in the
regression analyses are that in both Equation 1
and Equation 2 the ¢, are independently and
identically distributed, with a normal distri-
bution having mean O and within-group vari-
ance o?: ¢ ~ N(0, o). Another way to express
the distributional assumptions is that the con-
ditional distribution of ¥, given X and T, is

N(B1 + 82T + 8:X + BuT X, o%).

The ordinary least squares estimates of the
parameters in Equation 1 and Equation 2 are
denoted by & and . The sample within-group
regressxon linesare ¥ = & + faXand ¥ = @p
+ BBX The difference between these sample
regression lines at any value of X is written as
D(X):

D(X) = éx — . + (Ba — Bo)X
= I§2 + B4X-

In the statistical comparison of within-group
regression lines, D(X) is the key summary of
the data. All statistical inference procedures
investigated in subsequent sections are based
on D(X).

Before investigating D(X) further, I intro-
duce some additional estimates and notation.
An unbiased estimate of the common residual
variance ¢*, denoted by s?, is proportional to
the sum of the residual sums of squares for the
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two within-group regressions:

nA

st = N_4EZ (V;— éa — BaX,)?

N
+ X (V;—és — BuX,)].
J=nA-+1

The distribution of (N — 4)s%/0? is that of a
central chi-square variable with N — 4 de-

grees of freedom, written as X2(N — 4).
The covariances of the estimates of the re-
gression parameters in Equation 2 are written

= cov(B, Bi), i, i =1,...,4

Estimates of these covariances are written
~ A A . .

s = Cov(B, Bir), 4, i =1,...,4

The sample estimates are obtained by sub-
stituting s? for ¢? in the o;;». Important quanti-
ties in later sections are the elements of the co-
vanance matrix of the joint distribution of
32 and Bq

1 Xz Xz
5 == 2 —_— _E_
gy = ¢ ( - + + 55X, + SSXB)’

1 1
= g2 { —— .
= (SSXA + SSXB)'
NS N ¢
= SSX, T S5Xs)

where SSX, and SSX3 are the sums of squares
for X in Groups A and B:

na -
SSXA = Z (‘Y,' - XA)Q,
=1
N -
S$5Xs = X (X, — Xp)},
F=na+l

and X, and Xp are the within-group sample
means.

Under the regression model, D(X) is the
best linear unbiased estimate of A(X). The
sampling distribution of D(X) is N[A(X),
o0 ). The variance of D(X) may be written

(X—Xa? (X—X3p)?
SSXa SSXs |

"f)(:() [ +_ +

Na NB

An unbiased estimate of ¢} ,, denoted by
s} is formed by substituting s? for ¢? in the
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previous expression. The quantity (N — 4)-
[shoo/obx ] is distributed as X3(V — 4).
A useful decomposition of ¢y, is
GZD(X) = af)(c.) + o0u(X — Y 3
where

X\SSXp + XuSSXa
SSXa + S5X»

The quantity in Equation 4 is called C, be-
cause of its role in the Johnson-Neyman tech-
nique as the center of accuracy. It can be seen
from Equation 3 that C, has the property that
D(C,) is the D(X) with the smallest % n-
This minimum value of 0%, can be written

Co =

—ou/ou.  (4)

”D(c_)=022 + 02:C,

e
na np SSXaA+SSXp

Another important quantity in the study of
nonparallel regression lines is the point of in-
tersection of the lines. The abscissa of the
point of intersection of the population within-
group regressions is denoted by X°; Xe°
= —pB2/Bs. Properties of X° are that A(X°)
= 0, and that A(X) = 84X — X°). The
maximum likelihood estimator of X° is the
abscissa of the point of intersection of the
sample within-group regresslon lines. This
quantity is denoted by X° Xo = —B./B..
Properties of X6 are that D(X“) = ( and that
D(X) = By(X — Xo).

The statistical procedures considered in the
following sections are based on two kinds of
inferences about A(X): nonsimultaneous in-
ferences and simultaneous inferences. Non-
simultaneous procedures are used to make in-
ferences about A(X) at a single, prespecified
value of X. Simultaneous precedures are used
to make inferences about A(X) for a range of
values of X.

A general expression for interval estimates
of A(X) is given by

A(X) € [D(X) # VK= 1, ]. (5)

Nonsimultaneous inferences for A(X) at a
specified value of X are obtained from Ex-
pression 5 by setiing the constant K= = F=
(1, N — 4). Simultaneous inferences for A(X)
are obtained from Expression S5 by setting
K= = 2F*(2, N — 4). Additional discussion of
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simultaneous versus nonsimultaneous infer-
ences about A(X) is found in the section on the
Johnson-Neyman technique.

ancova With Nonparallel Regressions

ANcova  tests the null hypothesis that
B2 = 0, given that 8; = 0. Because the assump-
tion in ANCOVA is that 84 is identically zero, it
is likely that this assumption is violated to
some extent in many research settings. The
results of this article speak to both large and
small values of 8;. In this section the aANcova
estimate of the treatment effect is expressed in
terms of D(X). This result gives rise to a novel
interpretation of the aNcova estimate that is
not tied to the assumption of parallel regres-
sions. Also, statistical inference problems in
ANCova are investigated, and a modified ver-
sion of ANCOVA is proposed.

Preliminary Tests

Many textbook presentations of aNcova
advise that a determination of the validity of
the assumption of equal population within-
group slopes be attempted before an ANcova
is performed. A statistical test of the assump-
tion of equal slopes is carried out by testing the
null hypothesis that 84 = 0 against the alter-
native that 8 3 0. The test statistic is ﬁi/s“,
which is distributed under the null hypothesis
as F(1,.V — 4). Thus the null hypothesis of
equal slopes is rejected (at level a) when
B%/s44 > F*(1, N — 4). Because this test as-
sumes cqual population within-group residual
variances, inspection of the assumption of a
common ¢ should precede the test of equal
slopes.

The often recommended decision rule to use
ANCOVA when a significant difference in the
slopes is not detected and to shun aNcova
whenever a significant difference is detected
has both statistical and logical drawbacks.
Important differences in the slopes may go
undetected because of a lack of power in the
preliminary test. Conversely, with large enough
samples the null hypothesis of equal slopes may
be rejected when 8, is essentially zero. More-
over, the strict dichotomy between equal and
unequal slopes is an oversimplification of the
problem of comparing regression lines. It seems

plausible that small values of 8 do not seriously
affect the validity of conclusions based on an
ANCOVA, whereas large values may have serious
consequences. The following sections explicate
these effects and describe some alternatives to
ANCOVA.

aNcova Estimate of the Treatment Effect

When the assumption that 84 = 0 is satis-
fied exactly, the vertical distance between the
population within-group regressions is con-
stant over the range of X and equals 8,. The
estimate of the treatment effect obtained from
ANcova, the adjusted mean difference, is an
estimate of this constant difference of the pop-
ulation regressions. The adjusted mean differ-
ence calculated in ANCOva is

Ya— Fs—3,(Xs — Xu), (6)

where 3, is a pooled estimate of the (assumed)
common within-group regression slope.

« BaSSXa + BaSSXs

P S5Xa+ SSXs

When the within-group regressions are not
paraliel, the difference between the regressions
is a function of X. A key question in the in-
vestigation of the properties of ANcova when
B4 # 0 is, For what value of X does D(X) equal
the adjusted mean difference from Expression
6? This question may be answered by solving
for X in the equation B2 + A.X = Pr — Py
— B,(Xx — Xs). The value of X that satisfies
this equation is C,. A restatement of this result
is that

D(C.) = YA - YB - Bp(XA - XB) (7)

Whether or not 8, = 0, the estimated treat-
ment effect in ANcova is identical to D(C,).
The ANcova estimate of the treatment effect
can be obtained through the fitting of separate
within-group regressions without reference to
a pooled within-groups regression slope.

The adjusted mean difference of ANcova is
the most precise evaluation of the difference
between the within-group regressions. That is,
in ANcova the value of X at which to evaluate
D(X) is chosen to minimize o3, and thus
maximize the precision of the comparison of
the regressions. Under the ANCOvA assumption
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of B4 = 0, this precision is maintained for all
values of X.

The conventional use of ANcova is to in-
vestigate whether the population regression
lines coincide, given that the lines are parallel.
The adjusted mean difference in Expression 6
is an estimate of the (assumed) constant verti-
cal distance between the population regressions.
The result that D(C,) is equal to this estimate
gives rise to a novel interpretation of ANCOVA
that is not tied to the assumption that the re-
gression lines are parallel. Because C. is a
weighted average of X, and X, D(C,) is the
vertical distance between the sample regres-
sion lines at a point in the middle part of the
data. Consequently, regardless of whether the
population regressions are parallel, ANcova has
an interpretation as a procedure for evaluating
an “average” treatment effect to the extent
that A(C,) can be thought of as a treatment
effect for an “average” individual. Other pro-
cedures based on measures of an average treat-
ment effect are considered in the next section.

Statistical Inference

Equation 7 shows that D(C,) is the ancova
estimate of (8,, assuming that 8, = 0. Statisti-
cal inference procedures in ANcova further rely
on the assumption that 8, = 0 to obtain a more
precise estimate of ¢ I describe below the
statistical inference procedures used in AN-
cova and note difficulties with the additional
use of the assumption 8, = 0.

Sampling variances. The estimated vari-
ance of D(C.) that is used in ANCOVA may be
written

1 1
ssl—+—+

na ns

O
SSXa + SSXs ]

The quantity (N — 3)s2 is the residual sum of
squares obtained by replacing Ba and Bs by 8,
in fitting the sample within-group regressions.
This residual sum of squares can be partitioned
into two terms: one proportional to s? and one
proportional to 32.

2
(N=3)s3= (N—4)s*+— A I

SSXA+ SS5Xs

®)

The estimated sampling variance of D(C,)
used in ANcova is equal to (s%/s%)s}c,,. From
Equation 8

52 = N3 (N — 44 BY/sa). ©)

And from Equation 9, whenever 82/5s, > 1,
si/st> 1
From the decomposition in Equation 8, it
can be seen that s2 is a pooled estimate of ¢?,
in which both s? and the quantity
B
1 1
_ + —
SSXa  SSXs
are used as estimate of ¢®. This additional esti-

mate is an unbiased estimate of ¢* only when
Bs=0;

32 2
E[- B = g (1 + Ei).
1 1 T4
55X, 1 55%s

The decomposition in Equation 8 shows that
(N — 3)s2/q¢?is the sum of a chi-square variate
with ¥ — 4 degrees of freedom and a chi-square
variate with 1 degree of freedom, the latter
being a noncentral chi-square variate whenever
B4 # 0. Thus when B, =0, (N — 3)s2/q? is
distributed as x*(N — 3). When B,# 0,
(N — 3)s%/¢* has a noncentral chi-square dis-
tribution with N — 3 degrees of freedom and
noncentrality parameter 33/04. Consequently,

the expected value of sZ may be written:

B
2) = 42 e
E(s?) = o [1 + = 3)6“]. (10)
Hypothests tests. The ancova null hypothe-
sis that 8, = 0, given that 8, = 0, is tested by
use of the test statistic
[Py — Po = B (%s — Xn)T
11 (Xa — X»)? ]
52 —_— + p— - .
» LN np SSXA + SSXB
2
- [D(C.)J“(S_) (1)

2 )
5%(0.) 5

Under the null hypothesis, the test statistic
is distributed as F(1, N — 3). This null
hypothesis is rejected when the test statistic
is greater than F=(1, N — 3).

When B, # 0, the standard distribution
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theory and probability statements for this test
statistic are no longer valid. The test statistic
in Equation 11 has a doublyv noncentral F dis-
tribution with 1 and (V' — 3) degrees of free-
dom and noncentrality parameters [A(Ca)]%,
82/035. Even when 8, = 0, the distribution of
the test statistic is a doubly noncentral F.

A modified version of ANcova can be form-
ulated by using s%, ., as the denominator in the
test statistic in Equation 11; that is, 52, not s,
is used to estimate o2 This modified procedure
is appropriate for testing the null hypothesis
3» = 0{8s = 0. What is different is that the as-
sumption that 84 = 0 is not used in construct-
ing the estimate of o*. Although this modified
procedure is not optimal when the assumption
B4 = 0 holds exactly, the procedure may be
thought of as a safer ANcova in that the pro-
cedure retains its statistical properties when
the assumption is violated. For small values
of 34, the conditional null hypothesis is still of
interest, because A{X) is only a weak function
of X.

The test statistic for the null hypothesis
that A(C,) = 0 in this procedure is

e (12)

Under the null hypothesis the test statistic of
Expression 12 is distributed as F(1, N — 4),
regardless of the value of 35. The null hypothe-
sis is rejected at level @ when Expression 12 is
greater than F2(1, ¥ — 4).

futerval esitmaies. The population treat-
ment effect identified in ancova is the con-
stant difference of the population within-group
regression lines. An interval estimate of this
treatment effect with confidence coefficient
I — « is of the form of Expression 5 and is the
interval bounded by the end points

[ T 2
D((‘n] -+ VFH(L - ‘;\S%(Cg) (%g) (13)

The probability statement for this interval
estimate is exact only when g: = 0.

Analogous to the safer version of ANcova,
an interval estimate for A{(’,) with confidence
coefficient 1 — « can be constructed that does
not depend on the assumption 8, = 0. This
interval estimatc is bounded by the end points

D(C £ NFA (1, N — $isd. (14

Assessment of an Average Distance

Overall comparisons of the regression lines
can be useful even when the treatment effect is
a function of X. In this section a measure of
the average distance between the within-group
regressions is presented. Statistical procedures
based on this measure are formulated, and
comparisons with ANcova are obtained.

Measure of Average Distance

An obvious measure for an overall compari-
son of the regressions is the average difference
of the within-group regressions. Following
Rubin (1977), this average difference is defined
in the population as the sum of the vertical
difference of the population within-group re-
gressions weighted by the population distribu-
tion of X. (See Rubin, 1977, Figure 1 and
Equation 1.) Restricting the population to the
subpopulation containing the observed values
of X, the average distance can be written

¥ 2 Z B+ 8:X,) = A(Xe),  (15)

where

XG _ nAX'A ‘\l}' nBXB

is the grand mean of X. One interpretation for
A(Xg) is as the difference of the expected
group outcomes for a student having the aver-
age initial characteristic, that is, the treatment
effect for the average student.

Estimation and Inference

In the sample D(XG), the best linear un-
biased estimate of A(X¢) is the average vertical
distance between the sample within-group re-
gression lines:

x Z (32+34X) = D(XG)

N ja

The variance of D(Xg) is
1 1

‘720(70) = I:n-A + ;;
(XA — Xs)?
N? SSXA

"%
+ ssxn)]‘
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Because
DX = Tocy T cu(Xo — Co)2,

2 > 2
D Xa) < IDCcy

whenever X6 # C.. An unbiased estimate of
ohX%ey denoted by s3 g, is formed by sub-
stituting s for o® in the variance of D(Xg).
[Atiqullah, 1964, briefly discussed D(X;) as
an alternative to the aNcova estimate of the
treatment effect, and he derived o3 g,, under
the assumption that #, = np.]

The test statistic for the null hypothesis
that A(Xg) = O is

(DX, o) I

(16)
soda)

Under the null hypothesis the test statistic of
Expression 16 is distributed as F(1, N — 4),
and the null hypothesis is rejected at level a
when this test statistic is greater than
F2(1, N — 4). An interval estimate for A(X¢)
with confidence coefficient 1 — a is the inter-
val bounded by the end points

D(Xg) £ VF(1, N — Dsi g,  (17)

Comparison With ANCOV 4

The treatment effects identified in aNcova
and through this measure of average distance
differ because X differs, in general, from C, .

E[D(C.) — D(Xe)] = A(Cy)— A(Xq)
= B(C.— Xo),  (18)
- - - nBSSXB_nASSXA
~Xo= Xa=Xs) [FV(SSXAHSXB) ]
(19)

From Equation 19 C, = X¢ when either (a)
XA = XB or (b) nuSSX}«) = nASSXA. A
sufficient condition for (b) to be satisfied
is that ns = np and the sample variances of
X be identical in both groups. When n, and
ne are large, the means and variances rarely
will differ appreciably between groups.

The justification for the average distance
measure makes A(X¢) more attractive than
A(C,) for an overall comparison of nonparallel
regression lines. Because D(C,) is the most
precise comparison of the regressions, it is
worthwhile to consider whether D(C,) is com-
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petitive with D(X¢) for estimating the average
distance measure A(X). Comparing the mean
square errors (mse) of D(C,) and D(X¢) for
estimating A(Xg), we find

mse[D(C,)] — mse[D(X¢)]
= 044(Ca — Xg)? (E‘j - 1) (20)

where mse[D(X)] = E[D(X) — AXeR
From Equation 20 D(C.) has a smaller mse
than D(XG ) whenever C, Xaandﬁ,/a“ <1,
and D(Xg) has the smaller mse whenever
( # XG and ﬂ‘/du > 1.

Use of the Johnson-Neyman Technique

The Johnson-Neyman technique (J-N) is
intended specifically for the analysis of data
with nonparallel within-group regressions.
J-N determines a region of significance—values
of X for which the expected group outcomes
differ. The assumptions of J-N and ancova
differ only in that the ANCOVA assumption that
B4 = 0 is not made in J-N. Consequently, J-N
is considered an alternative to axcova when
this assumption is of doubtful validity (e.g.,
Kerlinger & Pedhazur, 1973).

J-N has a different objective than the pro-
cedures in previous sections. J-N produces an
assessment of A(X) as a function of X, whereas
the pick-a-point procedures assess only an
overall treatment effect. When 84 = 0, A(X)
reduces to an overall effect, and thus when this
assumption is satisfied exactly, ANcova vields
an assessment of the treatment effect for the
range of X. When g # 0, an overall treatment
effect can be thought of as an approximation
to A(X) in which the dependence on X is
suppressed. For slight dependence (8, small)
this approximation can be useful. For large 3,
the approximation sacrifices considerable in-
formation and can be misleading, as when the
regressions intersect in the middle of the data.

Because J-N does not depend on the assump-
tion that 84 = 0, |-N is useful for large, small,
or zero values of 3;. In this section the use of
J-N for assessing A(X) as a function of X and
the additional use of J-N for assessing an over-
all treatment effect are investigated. The
complementary roles of J-N and pick-a-point
procedures guide the exposition.
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Johnson-Neyman Technique

The region of significance determined by the
Johnson-Neyman technique provides an as-
sessment of A(X) as a function of X. Simul-
taneous regions of significance (R’) and non-
simultaneous regions of significance (R) can be
constructed. Simultaneous regions are appro-
priate for making statements about the differ-
ence hetween the regressions over the range of
X. A nonsimultaneous region can be validly
used when a statement about the difference
hetween the regressions at a single X value is
desired (Potthoff, 1964).

Simullaneons region of significance. A
simultaneous region of significance is defined
by Potthofi (1964) as

a region such that, with confidence > 95 per cent (for
a = .05) we can state that the two groups are different
sirultancously for all points contained in it. In other
words, in the long run, not more than 5 per cent of such
regions which are calculated will contain any points at
all for which the two groups are equal in expected cri-
terion score. (p. 244)

R’ is composed of two portions of the X-axis:
one in which it can be said that A(X) > O for
all X simultaneously and the other in which
it can be said that A(Y) < 0 for all X simul-
taneously, both with confidence 100(1 — a)%.
One or both of these regions may be null.

One derivation of the simultaneous region is
to construct a 100(1 — @)%, simultaneous con-
tidence band for the line ¥ = A(X). The simul-
taneous confidence band used in Potthoff
(1964) is the Working-Hotelling band (see
Miller, 1966, p. 111) that consists of the region
in the X,¥ plane enclosed by the upper and
lower confidence functions,

D(X) £ V2Fa(2, N — Dsd 4. (21)

The simultaneous region of significance is the
portion of the X-axis that is composed of values
of X that lie outside the intersection of this
confidence band with the X-axis. (Other simul-
taneous regions could be based on the many
simultaneous confidence bands that serve as
alternatives to the Working-Hotelling band.
Applications of some of these bands to J-N are
found in Aitkin, 1973, and Rogosa, 1978.)
Any particular X liesin R' if and only if a V'
value of zero is not included in the vertical
range of the confidence band at that X. Thus

the condition for X to lie in R’ is that
[DX)F — 2F*(2, N — &34, > 0. (22)

The set of X values that satisfy Expression 22
informs about values of the initial characteris-
tic X for which the treatment is effective.
Clearly, this information goes well beyond that
provided by an assessment of an overall treat-
ment effect.

The region of significance does not lose its
validity when the regressions are parallel.
When 8; = 0, R’ will include the range of X if
the treatment effect is large and will be null if
the treatment effect is negligible. If it were
known that 8, = 0, assessment of an overall
treatment effect would be more efficient than
the simultaneous region, but generally both
precedures will indicate similar conclusions
about the treatment effect.

Nonsimultaneous region of significance. The
original formulation of the Johnson-Neyman
{1936) technique and most subsequent techni-
cal work and substantive applications are
limited to a nonsimultaneous region of sig-
nificance. Potthoff (1964) argued that the
probability statement for the nonsimultaneous
region of significance is usually incorrectly
interpreted: Statements about the difference
of the regressions based on the nonsimultane-
ous region are valid only for a single specific
value of X and not for all X values in R.

The point X lies in R if and only if D(X)
significantly differs from zero. Thus R is com-
posed of all X values that satisfy the inequality,

[DX)T

Spxo

> Fa(1,N —4). (23)

The condition in Expression 23 is identical to
those used in previous sections in statistical
tests for overall treatment effects. Specifically,
for X = X, Expression 23 is the test for the
average distance meausre from Expression 16,
and for X = C,, Expression 23 is the test for
the safer ancova from Expression 12.

A statement equivalent to Expression 23 is
that X lies in R if the confidence interval for
the point A(X) does not include zero. This con-
fidence interval is bounded by the end points,

D(X) & JVF=(1, N — 4)s5, -

COMPARING

The 100(1 — «)%, nonsimultaneous confidence
band for the line ¥ = A(X) is simply the con-
catenation of the confidence intervals for each
point on the line and is bounded by the con-
fidence functions,

D(X) & yF*(1, N — 9)s3, 5,

A second interpretation of R is that values of
X in R lie outside the intersection of the X-axis
and this nonsimultaneous confidence band.

A third interpretation of the nonsimultane-
ous region of significance may be obtained
from a confidence interval for the abscissa of
the point of intersection of the within-group
regressions, X°. Values of X that lie outside
this confidence interval make up the region of
significance. Because the confidence interval
for X° is composed of the X values that do not
satisfy Expression 23 (see Fisher, 1946, section
26.2; Kastenbaum, 1959), this interpretation
leads to the same R as resulted previously.

Because 2F*(2, N — 4) > F=(1, N — 4), R’
is a subset of R. When D(X) has marginal
statistical significance over parts of the range
of X, R’ will be substantially smaller than R,
because all X for which Fe(1, N — 4)
< [D(X)}/shx < 2F2(2, N — 4) liein Rbut
not in R'.

Overall Treatment Effects and the Region
of Stgnificance

For the values of X in R/, it can be said (at
the specified a level) that the within-group
regressions differ simultaneously for these
points. This statement is useful in identifying
a range of initial characteristics for which there
is a sizable treatment effect.

The major problem with the use of R’ in
assessments of the effects of a treatment is that
R’ may be very small or may only include
points outside the plausible range of X. In
these situations the data cannot support the
strong statement of the simultaneous region
about differential treatment effects over the
range of X. In general, R’ is likely to be most
informative when large differential treatment
effects exist. The region of significance and the
overall treatment effect address different but
complementary questions about the effective-
ness of the treatment. To clarify some differ-
ences and similarities between the two ap-
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proaches, relations between R’ and overall
treatment effects are presented below.

If an overall treatment effect is of sole inter-
est in an investigation, then that effect should
be evaluated directly through a nonsimultane-
ous pick-a-point procedure. Use of the simul-
taneous region to evaluate an overall effect is
conservative. Whenever X is in R, D(X¢)
differs significantly from zero (using the same
a level for both determinations). This condi-
tion holds for any particular X value (e.g.,
X = C,). The converse does not hold. (The
converse does hold for the nonsimultaneous
region). Another illustration of the difference
between the nonsimultaneous and simultane-
ous assessments of A(X) is that the interval
estimate for the point A(X) is narrower than
the simultaneous confidence band for
Y = A(X) at the X value by a factor of

N2F=(2, N — 4)/F*(1, N — 4).

The most extreme example of a divergence
in the results from the simultaneous and non-
simultaneous procedures is that when R’ does
not exist (no X values lie in R’), it is possible
(although not likely) that a statistically sig-
nificant overall treatment effect is present. R’
does not exist when

D(C) P A2
WECIT | B ope, v — 0.
D(Ca) Sus
(See Rogosa, 1978.) Consequently, D(C,) is
statistically significant even when R’ does not
exist, whenever
D(C,) ]}
Fe(l, N — 4) < ERGTF

D(CY)
< [2F*(2, N — 4) — Bi/sul.

On the other hand, in some situations an as-
sessment of an overall treatment effect may be
misleading. The most extreme example is when
B4 is large and the sample regressions intersect
in the middle of the data (ie, Xo = Xa).
Then D(Xg) = 0, although the sample data
indicate important differential treatment ef-
fects. The research questions and the variables
measured will often provide guidance as to the
appropriate statistical procedures. The intent
here is to inform about properties of and trade-
offs among the procedures for comparing
regressions.
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Simulation Studies of the
Robustness of ANCcova

The robustness of aNcova to violations of
the assumption of equal population regression
slopes has been investigated in a number of
Monte Carlo studies. The conclusion of
Hamilton (1977) that “ANcova appeared ro-
bust to the violation of the assumption of
homogeneity of regression when group sizes
were equal; the technique appeared not to be
robust for unequal group sizes” (p. 701) is
representative of the results of the various
simulations. My comments are directed speci-
fically toward two published simulation
studies: Hamilton (1976, 1977) and Peckham
(1969), which is summarized in Glass, Peck-
ham, and Sanders (1972). Serious logical and
statistical flaws mar these simulations and
render their conclusions misleading.

The results of the simulations can be ex-
plained and extended using the analytic results
of previous sections. Equation 19 is used to
show why the robustness of ANCOvA appears to
depend on equal group sizes. Implicit in these
simulations is the definition of the treatment
effect as the difference between the nonparallel
regressions at X = Xg. Consequently, if the
simulated data are generated so that % ¢ = C,,
ANCOVA may appear not to be appreciably
affected by the unequal regression slopes.

In the simulations, data are generated for
two groups having nonparallel population
within-group regressions. For each of a variety
of within-group slope combinations, an an-
cova F statistic is computed from the data
generated at each replication. Then, for each
of these slope combinations, the proportion of
F statistics that exceed F*(1, N — 3) is tabu-
lated. The empirical alpha level or the empiri-
cal power is thus obtained.

In general, the ANcova F statistic computed
in these simulations will be distributed as a
doubly noncentral F with 1 and (N — 3) de-
grees of freedom and noncentrality parameters
[A(C.)D, $2/a.. The percentage points of the
doubly noncentral F distribution provide the
actual Type I error rate and power. An ap-
proximation to the doubly noncentral F by a
multiple of a central F (e.g.,, N. L. Johnson &
Kotz, 1970, section 30.6) could be used to
evaluate analytically the percentage points as
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a function of the parameters specified in the
simulations. This analytic approach is prefer-
able to the simulations.

The crucial role of equal group sizes is seen
from Equation 19. In any of these simulations,
the observed within-group variances of X will
be nearly equal on the average because the
groups are formed by random assignment.
Under the condition SSX,/n, = SS5Xp/ns,
Equations 18 and 19 show that D(C,)— D (X ¢)
is proportional to # — n%. Thus when group
sizes are equal, nonzero values of 8, will have
little effect on the numerator of the ancova F
statistic. Hamilton’s (1977) conclusion quoted
previously in an obvious consequence of the
dependence of D(C,) — D(X¢) on the relation
of group sizes.

In Peckham’s (1969) simulation the group
sizes are equal, and the population regressions
are specified to intersect at X¢. Thus the null
treatment effect is defined to be the difference
of the population regressions at X¢. In the
first phase of the simulation, X, = X3, and
thus C, = X¢. Consequently, any effects of
the unequal slopes on the aNcova F statistic
are transmitted through the denominator of
the F statistic. As 8, increases, 52 increasingly
overestimates ¢%, and as 8%/, increases, the
upper percentage points of the noncentral F
decrease. As would be expected, Peckham de-

* tected a small effect of unequal slopes on AN-

cova; ancova was found to be increasingly
conservative with respect to making a Type I
error as B4 increases (see Glass et al., 1972,
Table 17).

In the second phase of the simulation, non-
zero values of Xx — Xp were specified. But
again X¢ = C, because the conditions of equal
group sizes and equal sample variances of X in
the two groups were retained. Consequently,
differing values of X — X3 can have no effect
on the measured robustness of ANcova to un-
equal regression slopes, and the results of this
second phase were found to closely duplicate
those of the first phase (see Glass et al., 1972,
Table 18).

In his investigation of Type I error rates,
Hamilton (1976, 1977) used various combina-
tions of group sizes crossed with a number of
unequal slope combinations. Although the in-
terpretation of Hamilton’s results is compli-
cated slightly by his use of a random covariate,

some general conclusions can be drawn that are
completely predictable from my analytic re-
sults. When group sizes were not equal, large
effects of unequal slopes on the ancova F
statistic were detected. For the power study
Hamilton used only equal group sizes; con-
sequently, he found little effect of unequal
slopes on the power of ANCOVA.

Regrettably, both simulations incorporated
the unintended violation of the assumption of
equal residual variances. The variances of X
and ¥ were both standardized; consequently,
whenever 8, # 0, the residual variances were
not equal.

Furthermore, the simulations possess logical
flaws that render their conclusions misleading.
The key logical flaw in the simulations is the
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Table 1
Data and Summary Statistics
Group A Group B
X Y X Y
.28 2.23 2.36 3.25
97 4.99 2.11 5.30
1.25 3.37 45 1.39
2.46 8.54 1.76 4.69
2.51 8.40 2.09 6.56
1.17 3.70 1.50 3.00
1.78 7.93 1.25 5.85
1.21 243 .72 1.90
1.63 5.40 42 3.85
1.98 8.44 1.53 2.95
Xa=152 P,=554 Xp=142 Pp=2387
sx = .690 sy = 2.59 sx = .699 sy =170
rxy = .882 rxy .542

ignorance of the need for an explicit definition
of a treatment effect to be estimated. The simu-
lations merely verify (a) that D(C,) is a good
estimate of A(C,) and (b) that D(C,) is a poor
estimate of A(X) whenever |C, — X| and 8,
are large. The conclusions about the effects of
group sizes resulting from the simulations are
an inadequate guide for statistical practice. In
no sense is ANCova always unaffected by un-
equal regression slopes when groups sizes are
equal. Nor is ANCOvVA necessarily shattered by
unequal regression slopes when group sizes are
unequal. Whether D(C,) is an adequate mea-
sure of a treatment effect depends crucially on
the definition of that treatment effect. When-
ever the structure of a simulation is such that
A(C,) is the treatment effect to be estimated,
ANcova will prove to be adequate.

Computational Procedures and an Example

The statistical procedures for comparing re-
gression lines are easy to carry out using a
multiple-regression program and a hand cal-
culator. The exposition of the computational
procedures and the data analysis example

" make these steps explicit and serve as a review

of the recommended statistical procedures for
comparing regressions.

The statistical analysis proceeds from least
squares estimation of the parameters in Equa-
tion 2, the regression of ¥ on T, X, and T'X for
all N cases.! The estimates of the 8:(i = 1,
...y 4) yield D(X) = B: + B:X. Mean square
for error in this regression is s®. The esti-

sv.x = 1.29 Ssy.x 1.51

mated covariance matrix of the §; (which,
e.g., can be obtained through the covB com-
mand of the SYSREG routine in SAS) yields
thE Siit.

The assessment of overall treatment effects
through pick-a-point procedures requires evalu-
ation of D(X) and s}, for specified values of
X. To determine D(X¢), obtain the mean of all
N X values and substitute into D(X). To
determine D(C,), compute C, = —s24/54¢ and
substitute into D(X). The sampling variance is
found from the relations 53,5, = shc,, + Su-
(X — C.)?, where s3,¢,, = 522 + 524Ca. Inter-
val estimates and tests for the average distance
measures are constructed by substituting into
Expressions 17 and 16. Interval estimates and
tests for the safer ANCcova are constructed by
substituting into Expressions 14 and 12.

The Johnson-Neyman region of significance
can be obtained through some additional cal-

11t is recommended that descriptive within-group
analyses to examine possible outliers, nonlinearities,
appropriate transformations, residual variances, and
other descriptive measures precede the estimation of
Equation 2. However, some within-group information
can be recovered from the estimation of Equation 2.
The within-group regression lines can be obtained
because

ar=h+h;8r=h+h;8s=75;8 =5

And the residuals from the within-group regressions are
identical to the residuals from the fit to Equation 2.
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Figure 1. Plot of the data in Table 1 and the sample within-group regression lines.

culations. The end points of R’ are the roots of
the equation [D(X)]? — 2F*(2, N — 4)s} %,
= 0. This equation can be expanded as a quad-
ratic equation in X :

[82 — 2F=(2, N — 4)s4,]X?
+ 2[3234 - 2F°(2> N — 4)524]X
+ [B2 — 2F=(2, N — 4)5] = 0. (29)

Substitution of numerical values into Equation
24 yields an equation of the form AX? 4 2BX
+ C = 0. If R’ exists, the two distinct real
roots of this equation are

- B+ B — AC,
A

Denote these roots as X, for the larger root and
X_ for the smaller root. When Ef/s“ > 2F=
(2, N — 4), R’ is composed of the X values:
X> X, X<X_ When Js, < 2PF=(2,
N —4), R’ is composed of the X wvalues:
X_< X < X, (Rogosa, in press). Alterna-
tively, a graphical procedure for R’ is to plot

the confidence functions in Expression 21 and
find the X values outside the intersection of the
X-axis and the simultaneous confidence band
for ¥ = A(X).

The data in Table 1 illustrate these pro-
cedures. Summary statistics for each group are
also presented in Table 1. The data and the
within-group regression lines are plotted in
Figure 1. The sample within-group regressions
for Groups A and B, respectively, are

Y = 497 4 331X,
Y = 2014 131X.

The sample regressions intersect at the point
(.756, 3.00); X°(= — By/B.) is larger than 4
of the 20 X values.

The difference of the sample regressions is

D(X) = — 1.51 + 2.00X.

In these data Xg=C,= 147, and thus
D(Xg) = D(C.) = 1.43. The estimated vari-
ance of D(X) is 3, = .398 + .910(X
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— 1.47)% A 95%, confidence interval for A(X)
is the interval (093, 2.77); D(X¢)/spxq
= 2.217.

The simultaneous region of significance (at
a = .05) is composed of X values that satisfy:
2.63X? — 2(6.71)X + 1493 < 0. The end
points of R’ are X, = 3.47 and X_ = 1.64.
Because f82/54 < 2F%(2, 16), R’ is composed
of the X values: 1.64 < X < 3.47. (Of the 20
X values, 7 lie in R’.) In Figure 2 D(X) and
the 959, simultaneous confidence band for
Y = A(X) are plotted. Figures 1 and 2 con-
stitute a good graphical summary for the com-
parison of regression lines.

It is useful as a separate matter to consider
an analysis of these data using aNcova. The
within-group slopes do not significantly differ

12.Q

10.Qy

8.qf

6.4

4.0

at the .05 level (B3/si = 4.37 < F9%(1, 16)
= 4.49), and thus textbook advice would be to
use ANcova. The ANcova test: statistic in
Equation 11 equals 4.28, which is not signifi-
cant at the .05 level: 4.28 < F9(1,17)
= 4.45. Recall that D(C,) differs significantly
from zero at the .05 level; that is, the safer
ANCOVA (at @ = .05) rejects the null hypothe-
sis of no overall treatment effect. An equival-
ent way of contrasting standard aNcova and
the procedures described in this article is to
consider interval estimates of the treatment
effect. With confidence coefficient .95, ANcova
yields an interval estimate (—.028, 2.89),
whereas the interval estimate for A(C,) from
Expression 14 of (093, 2.77) is shorter than
the interval from ANcova.

3.0 5.0 6.0

Figure 2. Plot of the line ¥ = D(X) and the 959, simultaneous confidence band for the line ¥ = A(X).
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Summary and Discussion

This article presents a framework for the
assessment of the effects of a treatment through
statistical comparisons of within-group re-
gression lines. The effect of the treatment was
formulated as a linear function of an individual
initial characteristic X. Two types of assess-
ments of the relative effectiveness of the treat-
ment were investigated: assessment of an
overall treatment effect through pick-a-point
procedures and assessment of the treatment
effect as a function of X through the region of
significance. The use of both types of assess-
ments was illustrated by the analysis of a small
data set.

Measures of an overall treatment effect are
most useful when the within-group regression
slopes exhibit small to moderate differences.
Overall treatment effects would be used, for
example, in settings in which differential as-
signment of cases to alternative programs is not
feasible or when individual differences on X
have little substantive import. The measure of
average distance between the regressions ap-
pears to be the most useful measure in general,
but specific applications could well dictate a
different choice of X for the pick-a-point
procedure.

Assessments of the treatment effect as a
function of X are crucial when the within-group
regressions intersect in the range of X. The
Johnson-Neyman technique identifies a range
of X values for which the population within-
group regressions differ. Undoubtedly, the
widespread use of J-N has been hindered by
the dearth of computer routines to perform the
calculations. Even the specialized J-N com-
puter programs described in Borich, Godbout,
and Wunderlich (1976) offer only nonsimul-
taneous J-N procedures. However, as is shown
in this article, the simultaneous (or nonsimul-
taneous) region of significance can be computed
through a few manipuiations of the output
from a standard multiple-regression program.

The difference of the sample within-group
regression lines, D(X), is the key summary of
the data for comparing regression lines. In the
pick-a-point procedures, the estimate of the
treatment effect is D(X) evaluated at a parti-
cular X value. In particular, the average dis-
tance measure is estimated by D(X¢), and the

ANCOVA estimate of the treatment effect is
D(C,). Also, the Johnson-Neyman region of
significance is formed from a confidence band
for the line ¥ = A(X) that is constructed
about the line ¥ = D(X).

This article clarifies textbook advice on the
use of ANCova when the within-group regres-
sions are not parallel. Many current textbooks
stress the importance of the assumption of
equal population slopes. For example, Cohen
and Cohen (1975) warned repeatedly that un-
equal slopes render aNcova “invalid” or * pre-
clude its meaningful application.” In this view
the statistical significance of the test statistic
for equal slopes entirely determines whether
ANCOVA is meaningful. Although it is proper to
question the logic of estimating an assumed
constant distance between the regression lines
when that distance is a function of X, the
strict dichotomy implied by this advice is mis-
leading. The effects of nonparallel regressions
depend crucially on the degree of heterogene-
ity of the slopes. ANcovaA provides certain in-
formation about the treatment effect even when
significant differences in the slopes are detected.
With nonparallel population regressions, AN-
cova is not completely meaningless but it pro-
vides limited information and is subject to
serious problems. This article argues that an
appropriate pick-a-point procedure is prefer-
able to Ancova for assessments of overall
treatment effects.

The simulation studies of the robustness of
ANCOVA to nonparallel population regressions
reach different conclusions about the use of
ANcova. These studies regard the nonadditive
treatment effect not as a logical problem but as
a violation of a statistical assumption. Many
of these studies, because of flaws and limita-
tions in the design of the simulation, conclude
that the effects of unequal slopes on ancova
are often benign. However, I demonstrate
that the logic and conclusions of these simula-
tions are askew.

The results of this article blur the sharp dis-
tinction that is usually made between aNcova
as a method for comparing parallel within-
group regressions and J-N as a method for com-
paring nonparallel regressions. Overall treat-
ment effects are useful measures when the
heterogeneity of the regression slopes is not
extreme. J-N is still valid when the population
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regressions are parallel; an assessment of the
constant difference of the regressions is
obtained with a loss of some power.

Moreover, the results of this article question
the need for special procedures for the statisti-
cal comparison of parallel within-group regres-
sions. The methods presented for the compari-
son of nonparallel regressions also accommo-
date parallel regressions. The risks in the use
of special procedures for parallel regressions
appear to outweigh the small increase in pre-
cision of estimation that can be obtained when
the assumption of parallel regressions is satis-
fied exactly.
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